Package: rwa 0.0.3

rwa: Perform a Relative Weights Analysis

Perform a Relative Weights Analysis (RWA) (a.k.a. Key Drivers Analysis) as per the method described in Tonidandel & LeBreton (2015) <doi:10.1007/s10869-014-9351-z>, with its original roots in Johnson (2000) <doi:10.1207/S15327906MBR3501_1>. In essence, RWA decomposes the total variance predicted in a regression model into weights that accurately reflect the proportional contribution of the predictor variables, which addresses the issue of multi-collinearity. In typical scenarios, RWA returns similar results to Shapley regression, but with a significant advantage on computational performance.

Authors:Martin Chan <[email protected]>

rwa_0.0.3.tar.gz
rwa_0.0.3.zip(r-4.5)rwa_0.0.3.zip(r-4.4)rwa_0.0.3.zip(r-4.3)
rwa_0.0.3.tgz(r-4.4-any)rwa_0.0.3.tgz(r-4.3-any)
rwa_0.0.3.tar.gz(r-4.5-noble)rwa_0.0.3.tar.gz(r-4.4-noble)
rwa_0.0.3.tgz(r-4.4-emscripten)rwa_0.0.3.tgz(r-4.3-emscripten)
rwa.pdf |rwa.html
rwa/json (API)
NEWS

# Install 'rwa' in R:
install.packages('rwa', repos = c('https://martinctc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/martinctc/rwa/issues

On CRAN:

relative-weightsrwa

3.78 score 12 stars 10 scripts 406 downloads 1 mentions 4 exports 36 dependencies

Last updated 4 days agofrom:6ae0582383. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-winOKNov 19 2024
R-4.5-linuxOKNov 19 2024
R-4.4-winOKNov 19 2024
R-4.4-macOKNov 19 2024
R-4.3-winOKNov 19 2024
R-4.3-macOKNov 19 2024

Exports:%>%plot_rwaremove_all_na_colsrwa

Dependencies:clicolorspacecpp11dplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RColorBrewerrlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr